
56 KSME Journal, Vol. 2, No. 1, pp. 56~62, 1988. 

APPLICATION OF MODIFIED MAPPING-COLLOCATION METHOD 
TO CRACKS E M A N A T I N G  FROM A CIRCULAR HOLE 

IN A N  ORTHOTROPIC FINITE PLATE 

Seong Kyun Cheong* and Chang Sun Hong* 

(Received March 23, 1988) 

A modified mapping-collocation method is applied to the analysis of cracks emanating from a circular hole in an orthotropic 
finite plate under uniform stress. To check the effectiveness of this procedure, we present the various results for comparison with 
references. Then, the stress intensity factors are presented for several plate configurations of [0 ,/90 ,~]~ laminates. The results 
show that the modified mapping-collocation method is effectively applicable to analyzing such cracks in an orthotropic finite plate. 
The resulI:s also show that the stress intensity factors depend on the material orthotropy and geometry. 
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1. INTRODUCTION . 

Fracture of structural components is frequently caused by 
the initiation and growth of one or more cracks from stress 
concentrated regions. Many investigators have demonstrated 
that stress intensity solutions can be used to predict the 
fracture of structural components. Therefore, a technique for 
calculating the stress intensity factors for cracks placed near 
stress concentrated regions should be useful to designers or 
experimental investigators. Several investigators(Bowie, 
1956; Newman Jr., 1971; Hsu, 1975; Shivakumar and For- 
man, 1980) have obtained theoretical solutions for cracks where 
emanating from a circular hole in an isotropic plate. How- 
ever, relatively few studies of the problem for anisotropic 
materials have been reported. 

Recently, the modified mapping-collocation method was 
developed by Bowie and Neal(Bowie and Neal, 1970) for 
isotropic problems. This method combines the advantages of 
conformal mapping techniques with boundary collocation 
arguments. It was extended by Bowie and Freese(Bowie and 
Freese, 1972) to the analysis of anisotropic problems and 
applied to the central crack in plane orthotropic rectangular 
sheet. Gandhi(Gandhi, 1972) applied this method to the analy- 
sis of an inclined crack centrally placed in an orthotropic 
rectangular plate. 

In this paper the modified mapping-collocation method is 
applied to the analysis of cracks emanating from a circular 
hole in an orthotropic finite plate under uniform stress. To 
check the effectiveness of this procedure, we presented the 
various results for comparison with references. Then, the where 
stress intensity factors were presented for several plate 
configuration.,; of [0,/90~]~ laminates. 

*Department of Mechanical Engineering, Korea Advanced Insti- 
tute of Science and Technology, P.O. Box 150, Cheongryang, Seoul 
130-650, Korea 

BASIC EQUATIONS OF TWO- 
DIMENSIONAL ANISOTROPIC 

ELASTICITY 

If we assume that the complex parameters are all different, 
the general form of the stress function satisfying equilibrium 
and compatibility equations can be expressed as(Lekhnitskii, 
1968). 

F ( x ,  y) =2Re[F~(z~) +F~(z~)] (1) 

z ~ = x + s k y  (k-- l ,  2) (2) 

F~ and F2 are analytic functions of the complex variables 
zl and z2 respectively. The complex parameters Sl, s2 are 
roots of characteristic equation and are taken the positive of 
the imaginary part. The characteristic equation is given by 
(Lekhnitskii, 1968): 

a l l s4 -2m~s~+ (2a~2 + a6,~) s2-2a2~s+ a22=0 (3) 

Employing the stress functions, the stress components are 

ax = 2 R e [ s , 2  r ' (z~) + s22 r ' (z2)] 
ay=2Re[ r (z~) + r (z2) ] 
rxy . . . .  2Re[s~ r (z~) + s:~r (zz)] 

(4) 

r =F~'(z~) (k= l ,  2) (5) 

From the strain-displacement relations, a simple integra- 
tion gives the displacement components u and v : 

u = 2Re[P~ r (z~) + P2r (z2) ] 
v = 2Re[q~r (z~) + q~r (z2)] 

(6) 
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where p,,  q , ( k =  1, 2) are defined by 

p~ = al ls ,2+ a~2-- a~S ,  (7) 
q,=(al~s,~+a~-a~s,)/s~ (k=l ,  2) 

The boundary conditions of the traction type may also be 
expressed as 

f l  (s) + if~ (s) = +_ i f~ ~ ~(X.  + i I1,) ds 

:= ( l + i s , ) 4 , ( z l )  + ( l+is~)42(z~) (8) 
+ (1+ i,~-1) 41(z,) + (l+i,gz) 42(z2) + c  

where X~ and Y~ are the x and y components of forces 
exerted upon the edge per unit area. We take the upper signs 
for the external contour, and the lower for the internal. The 
counterclockwise direction along the external and internal 
contours will be considered as positive. ~o is the initial point 
and s is a variable point on each contour. The bar notation is 
a conjugate symbol. 

The boundary conditions of the displacement type may be 
written as 

hi (s) = 2Re[P~4, (zl) +P24~ (z2)] 
h2 (s) = 2Re [q~ r (zl) + q.r (z2) ] 

(9) 

[[1' ]' 
z ~ 2 C=Z-+ ~- - 1  (11) 

We consider now the complex variables zl, z~, and the 
additional relations : 

L + 1 
(12) 

Since x = ~ l = Z 2  on the crack, the parameter planes ~, ~'1, 
and ~2 coincide on the unit circle. Otherwise, ~ and ~2 are 
distinct and are found from 

2 1 
Z k  ~_ Z k  2 (k= 1, 2) (13) 

Thus, a simple mapping function has been used and the 

difficult task of finding an exact mapping function carrying 
the physical region of Fig. 1 into a parameter region has been 
avoided. 

For convenience, we now define the following useful nota- 
tion : 

4,  ( z , )  = r  6 , ( ~ ) ,  
4, '  (z,) = 4, '  (~',)/a/(~'D (k= l ,  2) 

(14) 

3. THEORETICAL D E V E L O P M E N T S  

We consider straight cracks emanating from a circular 
hole in an orthotropic finite plate as shown in Fig. 1. The 
modified mapping-collocation method will be utilized to 
solve this problem. The stress functions ensuring traction 
-flee conditions on the crack surface can be derived by using 
analytic continuation arguments of functions. 

We introduce the so-called Joukowsky transformation, 

(10, 
The above mapping function carries the unit circle and its 

exterior in the ~'-plane into the crack and its exterior. The 
other boundaries correspond to a closed contour in the 
~'-plane exterior to the unit circle with co-ordinate points 

T 

: IE i 
i 

Cracks emanating from a circular hole in an orthotropic 
finite plate under uniform stress 

where 

L ( " l l  

Taking into account the relations in Eqs. (4) and (14), the 
stresses in terms of 4~(~0 and 42(~2) are 

. . . .  ~r ~4~'(~)] 

4 ( ( ~ )  , 4 ; ( 0  l ay=2Re[ 
d" ~ #  "- o/ ( ~.) " J 

(16) 

From Eqs. (6) and (14), the displacements in terms of 4~ 
(~'1) and r are 

u = 2 R e [ P l r  +P242 (~'2) ] 
v=2Re[q,4~ (~1) + q2r (~'2) ] 

(17) 

From Eqs. (8) and (14), the resultant--forces in terms of 41 
(~1) and 42(~) are 

f~ (S) + if2 (S) = (1 + is1) 41 (~1) + (1 + is2) 42 (~2) 
+ ( l + i g l )  4i(~1) + (l+iE2)42(~2) +C (18) 

Let S~, ~ and S~2~ denote the two parameter regions corre- 
sponding to ~1 and ~2, respectively. Their union, St,§ S~, +, 
will be denoted by .S~ +. Figure 2 shows the transformed 
parameter region S~ ~. 

We introduce the following relation(Bowie and Freese 
1972) : 

(19) 

Fig. 1 
where 
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R, 

Fig. 2 ~'-transformed plane 

B=(g~-g~)/(s~-g2), C=(g~-s~)/(sa-g2) (21) 

Traction-free condition on the crack can be ensured if ~b~ 
(~') is analytic in the region S~ + and its inversion with respect 
to the unit circle(Bowie and Freese, 1972). If we assume that 
the total resultant-forces per unit thickness exerted on the 
hole boundary are zero, we can express ~bt as follows(Cheong 
and Hong, 1987): 

~(g) = ~ ] A , , ~ ' " +  ~B.(g+i)-~+ ~ C.(g-i)-" (22) 
n = l  r~=l 

where A=, B~, and C~ are complex constants. 
By considering stress symmetries and taking into account 

[0,,/90~], laminates, the stress function ~ may be rewritten 
as follows : 

r ra~+,+~,B~{(~2+l)-~ (23) 

Substituting Eq. (23) into (17), the displacements are 

u=2Re[~UMDI~A.+ ~_ D2~B~], etc. 

where 

(26) 

D _~ w2n+l_~ Ip2n+l~_l'p2n*ll In - -  ~'1Sl P a { B / b 2  '~b2 / 

~1 +Pz[B 1 
D2.=p ,  (~. a + l ) .  ~.2 (i/~.22 + 1) ,, 

+ C  ~'~ ( r  ] 
(27) 

Substituting Eq. (23) into Eq. (18), the resultant--forces are 

A = -T- f~] Y.ds= 2Re[ ~ Ft.A. + ~=II~.B.]+ c~ 

f2= ++_ X.ds= 2Re F a . A n + ~ ,  F4,,B. + c2 (28) 
o - n=i 

where 

F ~  = ~ 2~ + , +  {B/~22~+1+ C~2 . . . .  } 

F 2 . -  (~.t2+l). +B ~'2(1/~'2'+1)" (~'2'+1)" 
F,. = s~ ~,'"+' + s,{B/ ~d"+' + C~22 .... } 

F~.=s~ (r +s~ B~%(1/~.d+l).  

+ c  ( ~ / ~  15w] (29) 

Truncating the unknown terms A~ and B= in Eq. (23) so 
that the boundary conditions are satisfied with sufficient 
accuracy, the stress functions may be determined. 

. A P P L I C A T I O N  O F  M O D I F I E D  
M A P P I N G - C O L L O C A T I O N  

M E T H O D  

where A~ and B. are rearranged real constants. In general, 
[G/90m]. laminates have pure imaginary complex parame- 
ters. 

Finally, the problem simplifies to selecting the unknowns 
A,, and B~ in Eq. (23) so that the boundary conditions may be 
satisfied. In the analysis of an orthotropic infinite plate, A j s  
are directly obtained by applying the boundary conditions at 
infinity(Cheong and Hong, 1987). To accomplish numerical 
analysis, we have to truncate the terms of Eq. (23). 

Substituting Eq. (23) into Eq. (16), the stresses are 

The least square collocation procedure suggested in the 
literature (Bowie and Freese, 1972) was utilized. In multiply 
connected regions there is a difficulty associated with con- 
stants of integration in A+ if> Considering a traction-free 
condition on the crack and circular hole, the constants of 
integration for the internal contour have been chosen as zero. 
Therefore, the constants of integration for the internal con- 
tour are as follows: 

c~=0, c2=0 (30) 

o~=2Re[]~MS~An+ ~ S2.B.], etc. (24) 

where 

812 ~12n 
S~- w;(~'l) ( 2 n + l )  

+ ~ ) - {  C (2n+ 1) ~'22~ - B  (2n + 1)/~'22"+2 } 

= sl 2 ( 1 - 2 n )  ~ 'd+l  sa 2 
Sz~ w'(~'~) ([12+1) "+1 + rv'(~'2) 

B{ ( 2 n - 1 )  ~'22" 2_ ~-22._ ~-22.} + C{(1 -2n )  ~'22+ 1} 

Taking into account stress symmetries and the resultant 
force acting on the segment of the real axis from the crack tip 
z = L  to the point E, the constants of integration for the 
external contour can be easily determined. Then, the con- 
stants of integration for the external contour are as follows : 

ct=-WT/2,  c2=0 (31) 

We can rewrite Eq. (28) as follows : 

2Re[ ~ F1.A~ + ~I F2.B~]=- c,u f~ ~ Ynds 

2Re[~ Fa,,A~+ ~= F4~B.]=-c2+ fs  X~ds (25) (32) 
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We take the point E and point (R, 0) as the initial points 
for the external and internal contours respectively(see Fig. 1). 
At the initial points, Eq. (32) can be reduced as follows : 

2Re F~.A, + F~,B. = - c~ 
- t l = l  

(33) 

If we take ~, as the i - - th  collocation point, Eq. (32) can be 
expressed as follows : 

2Re F3. ;; 1 A . +  ~ ,i B .  =++- X .ds  
n = ]  i - 1  

(34) 

Both Eq. (33) and Eq. (34) can be expressed as the following 
type : 

GInA. +.=~ G2nB.= fo 

~ Ga,A,+ ~,=, G4.B,.=go (35) 

where fo and go are specified values at collocation point. 
In general, the computed boundary values have errors at 

any collocation point ~ because the terms of stress function 
were truncated. The square of this error is 

We obtained the final Eq. (38) to solve in this analysis. In 
applying the method, we must specify the collocation points 
on the boundaries at which the error equation is to be 
evaluated. Since stress symmetries were considered in Eq. 
(23), it is necessary to consider only a quarter of the plate. 
The collocation points on the circular hole boundary were 
specified by dividing the angular section into equal incre- 
ments. This procedure was also applied to the external 
contour. In general, the total number of collocation points 
taken, M. is twice the total number of unknown coefficients 
in the stress function(Bowie and Freese, 1972). 

5. S T R E S S  I N T E N S I T Y  F A C T O R  

The stress intensity factors may be evaluated directly from 
the stress functions r or Cz(zD. In the limit as zj 
approaches the crack tip, say zo(=L) ,  we can express the 
relation between the stress intensity factors and the stress 
function as follows(Sih and Liebowitz, 1978) : 

K~+ -K" : 2 J ~ [  - s ; - s~  ] lim JzT--~or (40) 
$2 k S2 Jz,-zo - 

Considering mapping function z =w(g)  and employing Eqs. 
(12)-(15), we obtain 

(41) 

e~ 2= - GI,A,~- G2,~B. 
n = t  m 

+ & -  G3~A~- G~.B. 
M n = l  m 

(36) 

The coefficients are determined by minimizing the squares of 
the errors at a specified number of points Mt o n  the boundary. 

Mt 

0 W, e~ 2 
m = o  =0 
OAr 

Mt 

c) '~, e m  2 
m - o  ~ - 0  

O Bq 

( q = - M ,  - M + I ,  " ..... , N) 

( q = l ,  2, 3, 4, - ..... , K) (37) 

Substituting Eq. (23) into Eq. (36) and considering only the 
opening mode, the stress intensity factor can be expressed in 
terms of coefficients of stress function as follows : 

K,:2-/-uTL[-S-a-~TsL][~, (2n+ 1 ) A . +  .@ - ( - ~ B .  ] 

(42) 

Thus, we can evaluate the stress intensity factors if the 
coefficients of the stress functions are determined. 

6. N U M E R I C A L  R E S U L T S  

From the above equations, we obtain a set of (N + M + K + 1) 
linear algebraic equations for the unknown coefficients A.  
and B.. 

We applied a modified mapping--collocation method to the 
analysis of cracks emanating from a circular hole in an 
orthotropic finite plate under tmiform stress. To check the 

where 

a.q = ~, -G1.G,q+ ~. Ga.Gaq] 
m = 0  n = l  ra  

/?,.~,= N G4.G3q 
m = o  n = l  m 

M, Gz,,G~q+ ] Z.q = 52, ~ G4.G,q 
m = o  n = l  m 

8q = ~. foGaq+ goGaq 
m = 0  n = l  ra 

~q= ~] foG2q+ goG4q 
m = o  n = l  m 

(38) 

(39) 

Table 1 Correction factors (KJKt  ~ obtained by truncating 
the terms of stress function 

N K 
A ~,+1+ -n r ~, A" ~ B,,r 

I0 15 20 25 30 

6 1.054 1.042 1.035 1.030 1.026 

9 1.068 1.061 1.056 1.054 1.053 
12 1.073 1.066 1.062 1.061 1.061 
15 1.074 1.067 1.064 1.062 1.062 
18 1.074 1.067 1.064 1.063 1.063 
21 1.074 1.067 1.064 1.063 1.063 
24 1.074 1.067 1.064 1.063 1.063 
Laminate [0], H/W=3,  2R/W=0.2, 2L/W=0.24. 
KI~ T~ ~/~LL 
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Table 2 Correction factors (K#Kt ~ obtained by truncating the 
terms of stress function 

N K 

M 1 

10 15 20 25 

6 1.374 1.370 1.366 1.363 
9 1.417 1.415 1.412 1.410 

12 1.454 1.453 1.452 1.451 
15 1.473 1.473 1.473 1.472 
18 1.484 1.483 1.483 1.483 
21 1.489 1.489 1.489 1.489 
24 1.493 1.493 1.493 1.493 
27 1.494 1.494 1.494 1.494 

Laminate [0], H / W  3, 2R/W=0.2,  2L/W=0.7,  
K#= T, /~L 

effectiveness of this procedure, we presented the various 
results for comparison with references. Then, the stress intern 
sity factors were presented for several plate configurations of 
[0n/90m]~ laminates. 

Tables 1 and 2 show the correction factors for short and 
long cracks respectively, which were obtained by truncating 
the terms of stress function. It was appropriate to truncate at 
M=21,  N=21 ,  and K = 2 0  f o r 2 L / W < 0 . 4 a n d M = 2 4 ,  N 
=24, and K = 1 5  for 2L /W>0.4 .  Material properties of E 

-glass/epoxy used in the current analysis are as followings : 

E, = 53.74 GPa (7. 80 x 10Spsi), 
E2=17.91 GPa (2.60• psi), 
G12=8.96 GPa(1.30• psi), 
2"/12 : O. 25. 

Figures 3, 4 and 5 compare the present results with those of 
references. Figure 3 shows the correction factors for cracks 
emanating from a circular hole in an isotropic finite plate 
under uniform stress. The present results almost coincide 
with Newman's results(Newman Jr., 1971), which were 
obtained by using the boundary collocation method. The 
isotropic solution was obtained by setting the complex 
parameters sl = 1.0i and s2 =0.995i. Figure 4 shows the correc- 
tion factors for cracks emanating from a circular hole in 
glass/epoxy unidirectional laminate under uniform stress. 
The present result is in good agreement with Wang's 
result(Wang and Yau, 1980), which was obtained by using the 
finite element method. In Fig. 4, Wang's result for glass/ 
epoxy was replotted by digitizing their graph. Figure 5 shows 
the correction factors for central cracks in an isotropic finite 
plate. The present results were obtained by taking the radius 
of hole, R as small value. The present results almost coincide 
with Bowie's results(Bowie and Freese, 1972), which were 
obtained by using the modified mapping--collocation method 
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and employing the simple stress function formulated for only 
a central crack. Observing Figs. 3, 4 and 5, we can see that the 
present results almost coincide with those of references. 

Figures 6 and 7 show the correction factors for cracks 
emanating from a circular hole in laminate [ 0 ] and laminate 
[0/90]~ under uniform stress. The stress intensity factors 
decrease as the aspect ratio, H~ W increases, In Fig. 6 the 
correction factors have limits when the aspect ratio, H / W  is 
about 3. In Fig. 7 the correction factors have limits when the 
aspect ratio, H / W  is about 2. 

Figure 8 shows the correction factors for cracks emanating 
from a circular hole in [0,/90,]~ laminates with H / W = I  
under uniform stress. In the range of entire crack length, the 
stress intensity factors for [0,/90~]~ family exist between 
those for 0=0  ~ and 0=90 ~ The more the percentage of 0 ~ 
plies increases, the larger the stress intensity factor becomes. 
Figure 9 shows the correction factors for cracks emanating 
from a circular hole on [0,/90,],  laminates with H~ W=2 
under uniform stress. In the range of small crack length, the 
stress intensity factors for [0,/90m]~ family exist between 
those for ~? = 0 ~ and 0 = 90 ~ and the stress intensity factor for 
0=0 ~ is about 40 percent larger than that for 0=90 ~ But, as 
the crack length increases, the stress intensity factors for [0~/ 
90~], family almost make no difference. 

7. CONCLUSION 

A modified mapping-collocation method was applied to the 
analysis of cracks emanating from a circular hole in an 
orthotropic finite plate under uniform stress. Comparing the 
present results with those of references, we can see that this 
method is effectively applicable to analyzing such cracks. 

As the aspect ratio increases, the stress intensity factors for 
cracks emanating from a circular hole in [0n/90m]8 laminates 
under uniform stress decrease. In the range of entire crack 
length, the stress intensity factors for [0n/90~]~ laminates 
with H / W = I  exist between those for 0=0  ~ and 0=90 ~ The 
more the percentage of 0 ~ plies increases, the larger the stress 
intensity factor becomes. In the range of small crack length, 
the stress intensity factors for [0,/90~]s laminates with large 
aspect ratio exist between those for 0 = 0 ~ and 0 = 90 ~ But, as 
the crack length increases, the stress intensity factors for [0,/ 
90m]s family almost make on difference. 

The stress intensity factors for cracks emanating from a 
circular hole in an isotropic plate can be directly obtained by 
using the program developed here. "]'he stress intensity fac- 
tors for central cracks can be also obtained by using the same 
program. 
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